Posts Tagged ‘Contradicción’

La propiedad arquimediana

20/10/2009

El axioma del supremo asegura que cualquier conjunto de números reales no vacío y acotado superiormente tiene cota superior mínima. La propiedad arquimediana de la suma es una importante consecuencia de este axioma.

Proposición. Si a, b \in \mathbb{R} son números reales con a > 0 entonces existe un número natural n \in \mathbb{N} tal que na > b.

Demostración. Razonamos por reducción al absurdo. Supongamos por un momento que para cualquier número natural n \in \mathbb{N} se tiene la desigualdad na \leq b. Consideremos el conjunto A=\{na : n \in \mathbb{N}\}. Tenemos a \in A, de modo que A \neq \emptyset. Además, A está acotado superiormente porque b es una cota superior de A. Ahora se sigue del axioma del supremo que existe \alpha = \sup A. Observemos que \alpha - a  < b, de manera que \alpha  < (n+1)a. Esto es una contradicción porque así \alpha no es cota superior de A.