Inducción matemática

La inducción matemática es una forma de demostración que se usa para establecer la validez de una proposición acerca de los números naturales. Se procede probando que la proposición es cierta para el primer número natural y después probando que si la proposición es cierta para un número natural entonces también es cierta para el siguiente. Este método se puede enunciar formalmente del siguiente modo.


Principio de inducción matemática.
Sea P \subseteq \mathbb{N} y supongamos que

  • 1 \in P,
  • n \in P \Longrightarrow n+1 \in P.

Entonces P=\mathbb{N}.

El conjunto P representa a aquellos números naturales que satisfacen la proposición que se quiere demostrar. La condición n \in P se llama hipótesis de inducción y la implicación n \in P \Longrightarrow n+1 \in P se llama paso inductivo. La siguiente forma equivalente del principio de inducción matemática consiste en realizar la hipótesis de inducción sobre un número natural y todos los anteriores a él.


Principio de inducción completa.
Sea P \subseteq \mathbb{N} y supongamos que

  • 1 \in P,
  • \{1, \ldots ,  n\} \subseteq P \Longrightarrow n+1 \in P.

Entonces P=\mathbb{N}.

Etiquetas: ,

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s


A %d blogueros les gusta esto: