Aplicaciones del teorema de Taylor

Después de este periodo de inactividad en el blog se me ha ocurrido publicar una entrada a propósito de un par de aplicaciones del teorema de Taylor.

Supongamos que f es una función para la cual existen f^\prime (x_0), \ldots , f^{(n)}(x_0). El polinomio de Taylor de grado n para f en x_0 viene dado por

\displaystyle{ p_n(x)= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^n.}

El resto de Taylor de orden n para f en x_0 es la diferencia entre la función y su polinomio de Taylor, es decir, r_n(x)=f(x)-p_n(x). La condición del resto asegura que

\displaystyle{\lim_{x \rightarrow x_0} \frac{r_n(x)}{(x-x_0)^n}=0.}

Suponiendo que existen f^\prime, \ldots, f^{(n+1)} en un intervalo (x_0,x), el teorema de Taylor proporciona las siguientes expresiones para algún t \in (x_0,x)

\displaystyle{r_n(x)=\frac{f^{(n+1)}(t)}{n!}(x-t)^n (x-x_0 )},   (Cauchy),

\displaystyle{r_n(x)=\frac{f^{(n+1)}(t)}{(n+1)!}(x-x_0)^{n+1}},    (Lagrange).

1. Cálculo de límites con expresiones indeterminadas

Una bonita aplicación de la condición del resto sucede al calcular el límite de una expresión indeterminada sustituyendo las funciones que aparecen por sus polinomios de Taylor. Supongamos por ejemplo que queremos calcular

\displaystyle{\lim_{x \rightarrow 0} \left (\frac{\sin x}{x} \right )^{1/x^2}.}

Tomando logaritmos y aplicando la regla de L’Hôpital resulta

\displaystyle{\log \lim_{x \rightarrow 0}  \left (\frac{\sin x}{x} \right )^{1/x^2} \hskip-1ex =\lim_{x \rightarrow 0} \frac{1}{x^2} \log \left (\frac{\sin x}{x}\right ) = \lim_{x \rightarrow 0} \frac{1}{2x^2} \frac{x \cos x - \sin x}{\sin x}.}

Aplicando sucesivas veces la regla de L’Hôpital se obtienen expresiones cada vez más complicadas. Un recurso es considerar polinomios de Taylor, digamos

\displaystyle{\cos x = 1-\frac{x^2}{2!} +r_2(x), \hskip1ex\sin x = x - \frac{x^3}{3!}+s_3(x),}

donde los restos r_2(x), s_3(x) satisfacen las condiciones \lim r_2(x)/x^2= 0, \lim s_3(x)/x^3=0 cuando x \rightarrow 0. Tenemos

\displaystyle{\frac{1}{2x^2} \frac{x \cos x - \sin x}{\sin x}= \frac{1}{2} \frac{x}{\sin x} \left [  -\frac{1}{3} + \frac{r_2(x)}{x^2}+ \frac{s_3(x)}{x^3} \right ],}

y esta expresión tiende hacia -1/6 cuando x \rightarrow 0, de donde se deduce que

\displaystyle{\lim_{x \rightarrow 0} \left (\frac{\sin x}{x} \right )^{1/x^2}=\frac{1}{\sqrt[6]{e}}.}

Se puede comprobar este resultado con Wolfram Alpha. Al teclear el código

lim (sin(x)/x)^(1/x^2) as x goes to 0

se obtiene esta respuesta.

2. La base de los logaritmos naturales es un número irracional

Demostración. Razonamos por reducción al absurdo. Supongamos por un momento que e=m/n donde m,n \in \mathbb{Z} son números enteros con n > 0. Considerando el polinomio de Taylor de grado n para la función exponencial

\displaystyle{e^x=1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + r_n(x),}

y particularizando esta expresión cuando x=1 se obtiene

\displaystyle{\frac{m}{n}=1+1+\frac{1}{2!} + \cdots + \frac{1}{n!}+ r_n(1).}

El resto de Lagrange viene dado por r_n(1)=e^t/(n+1)! para algún t \in (0,1) y por lo tanto 0 < r_n < 3/(n+1)! Multiplicando por n! resulta

\displaystyle{(n-1)!m=n!+n!+\frac{n!}{2!} + \cdots + \frac{n!}{n!}+ n! r_n(1).}

Los términos que aparecen en la expresión anterior son enteros pero 0 < n!r_n(1) <3/(n+1) \leq 1, y esto es una contradicción.

About these ads

Etiquetas: , , , , ,

Deja un comentario

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s


Seguir

Recibe cada nueva publicación en tu buzón de correo electrónico.

%d personas les gusta esto: